动手学数据分析_Task04:数据可视化

复习:
1.第一章对数据有了基本的了解,也学习了一些基本的统计方法
2. 第二章学习了数据的清理和重构,使得数据更加的易于理解

数据可视化可以让我们更好的看到每一个关键步骤的结果如何,可以用来优化方案,是一个很有用的技巧。
python数据可视化库Matplotilb
Matplotilb库是一个Python的2D绘图库

【思考】最基本的可视化图案有哪些?分别适用于那些场景?(比如折线图适合可视化某个属性值随时间变化的走势)
1 柱状图
展示多个分类的数据变化和同类别各变量之间的比较情况。
适用:对比分类数据。
局限:分类过多则无法展示数据特点。

2 条形图
类似柱状图,只不过两根轴对调了一下。
适用:类别名称过长,将有大量空白位置标示每个类别的名称。
局限:分类过多则无法展示数据特点 。

3 折线图
展示数据随时间或有序类别的波动情况的趋势变化。
适用:有序的类别,比如时间。
局限:无序的类别无法展示数据特点。

4 柱线图
结合柱状图和折线图在同一个图表展现数据。
适用:要同时展现两个项目数据的特点。
局限:有柱状图和折线图两者的缺陷。

5 散点图
用于发现各变量之间的关系。
适用:存在大量数据点,结果更精准,比如回归分析。
局限:数据量小的时候会比较混乱。

6 饼图
用来展示各类别占比,比如男女比例。
适用:了解数据的分布情况。
缺陷:分类过多,则扇形越小,无法展现图表。
直方图,功率图,条形图,错误图,散点图等等

数据可视化的主要作用,在于通过图形和色彩将关键数据和特征直观地传达出来,从而实现对于相当稀疏而又复杂的数据集的深入洞察。