集成学习_task1

这一节的学习主要掌握了机器学习理论是统计学、概率学、计算机科学以及算法的交叉领域,是通过从数据中的迭代学习去发现能够被用来构建智能应用的隐藏知识。尽管机器学习和深度学习有着无限可能,然而为了更好地掌握算法的内部工作机理和得到较好的结果,对大多数这些技术有一个透彻的数学理解是必要的。

1、多元微积分:一些必要的主题包括微分和积分、偏微分、向量值函数、方向梯度、海森、雅可比、拉普拉斯、拉格朗日分布。
2、概率论和统计学:机器学习和统计学并不是迥然不同的领域。事实上,最近就有人将机器学习定义为「在机器上做统计」。机器学习需要的一些概率和统计理论分别是:组合、概率规则和公理、贝叶斯定理、随机变量、方差和期望、条件和联合分布、标准分布(伯努利、二项式、多项式、均匀和高斯)、 矩母函数 (Moment Generating Functions)、最大似然估计(MLE)、先验和后验、最大后验估计(MAP)和抽样方法。
3、线性代数:在机器学习领域,线性代数无处不在。主成分分析(PCA)、奇异值分解(SVD)、矩阵的特征分解、LU 分解、QR 分解、对称矩阵、正交化和正交归一化、矩阵运算、投影、特征值和特征向量、向量空间和范数(Norms),这些都是理解机器学习中所使用的优化方法所需要的。