动手学数据分析_Task04

2 第二章:数据可视化

开始之前,导入numpy、pandas包和数据
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

text = pd.read_csv(r’result.csv’)
text.head()

2.7 如何让人一眼看懂你的数据

2.7.1 任务一:跟着书本第九章,了解matplotlib,自己创建一个数据项,对其进行基本可视化

折线图、柱状图、饼图、散点图等

2.7.2 任务二:可视化展示泰坦尼克号数据集中男女中生存人数分布情况(用柱状图试试)

sex = text.groupby(‘Sex’)[‘Survived’].sum()
sex.plot.bar()
plt.title(‘survived_count’)
plt.show()

2.7.3 任务三:可视化展示泰坦尼克号数据集中男女中生存人与死亡人数的比例图(用柱状图试试)

计算男女中死亡人数 1表示生存,0表示死亡
text.groupby([‘Sex’,‘Survived’])[‘Survived’].count().unstack().plot(kind=‘bar’,stacked=‘True’)
plt.title(‘survived_count’)
plt.ylabel(‘count’)

2.7.4 任务四:可视化展示泰坦尼克号数据集中不同票价的人生存和死亡人数分布情况。(用折线图试试)(横轴是不同票价,纵轴是存活人数)

计算不同票价中生存与死亡人数 1表示生存,0表示死亡
fare_sur = text.groupby([‘Fare’])[‘Survived’].value_counts().sort_values(ascending=False)
fare_sur

排序后绘折线图
fig = plt.figure(figsize=(20, 18))
fare_sur.plot(grid=True)
plt.legend()
plt.show()

排序前绘折线图
fare_sur1 = text.groupby([‘Fare’])[‘Survived’].value_counts()
fare_sur1

fig = plt.figure(figsize=(20, 18))
fare_sur1.plot(grid=True)
plt.legend()
plt.show()

2.7.5 任务五:可视化展示泰坦尼克号数据集中不同仓位等级的人生存和死亡人员的分布情况。(用柱状图试试)

1表示生存,0表示死亡
pclass_sur = text.groupby([‘Pclass’])[‘Survived’].value_counts()
pclass_sur

import seaborn as sns
sns.countplot(x=“Pclass”, hue=“Survived”, data=text)

2.7.6 任务六:可视化展示泰坦尼克号数据集中不同年龄的人生存与死亡人数分布情况。(不限表达方式)

facet = sns.FacetGrid(text, hue=“Survived”,aspect=3)
facet.map(sns.kdeplot,‘Age’,shade= True)
facet.set(xlim=(0, text[‘Age’].max()))
facet.add_legend()

2.7.7 任务七:可视化展示泰坦尼克号数据集中不同仓位等级的人年龄分布情况。(用折线图试试)

text.Age[text.Pclass == 1].plot(kind=‘kde’)
text.Age[text.Pclass == 2].plot(kind=‘kde’)
text.Age[text.Pclass == 3].plot(kind=‘kde’)
plt.xlabel(“age”)
plt.legend((1,2,3),loc=“best”)